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• The last two lines of Eq. (48), which can be rewritten in an alternative, more suitable form as

... sin 2θ′ sin(φSA − φγ + φ′)

∫

d2k⊥a
1

2M

[

4k⊥a(k̂⊥a · q̂T )
2 + k̂⊥a · (qT − 2k⊥a)

]

∆Nf q
a/↑ f̄ q

b/B

+ sin 2θ′ sin(φSA − φγ − φ′)

∫

d2k⊥a
2k⊥a − qT (k̂⊥a · q̂T )

2M
∆Nf q

a/↑ f̄ q
b/B , (49)

represent the equivalent of the “Cahn effect” for the single polarized DY, and show a structure very
similar to that of the unpolarized part. These contributions are suppressed by one power of qT /M
and, as in the unpolarized Cahn effect, we can recast the integration on k⊥a similarly to what is done
in Eq. (C9): by doing this one can observe that they can give access to the difference between the
average transverse momenta of the unpolarized and the Sivers distribution functions.

These results become particularly transparent and acquire a phenomenological value when the integrals over
the intrinsic transverse momenta are explicitly performed by using a simple Gaussian model for the TMDs.
Similarly to what was done in the last Section of Ref. [10], we assume the k⊥ dependence of the TMDs can
be factored and approximated with a Gaussian distribution of the form:

fa/A(xa, k⊥a) = fa/A(xa)
e−k2

⊥a/〈k
2

⊥a〉

π〈k2⊥a〉
, (50)

where fa/A(xa), can be taken from the available fits of the world data. In general, we allow for different widths
of the Gaussians for the different parton flavours, but take them to be constant. For the Sivers function, we
assume a similar parametrization, with an extra multiplicative factor k⊥a to give it the appropriate behavior
in the small k⊥a region [20]:

∆fa/↑(xa, k⊥a) = ∆fa/↑(x)
√
2e

k⊥a

MS

e−k2

⊥a/〈k
2

⊥a〉S

π〈k2⊥a〉
, (51)

where the x-dependent function ∆fa/↑(xa) is not known, and should be determined phenomenologically by
fitting the available data on azimuthal asymmetries and moments; the k⊥ dependent Gaussian has been
assigned a width 〈k2⊥a〉S and a suitable normalization coefficient

√
2e to make sure it fulfills the appropriate

positivity bounds [21].
By inserting Eqs. (50) and (51) into Eq. (48) we get

dσunp

d4qdΩ′
=

α2

6M2s

∑

q

e2q f q
a/A(xa) f̄

q
b/B(xb)

e−q2T /〈q2T 〉

π〈q2T 〉

{

(1 + cos2 θ′) +
qT
M

〈k2⊥a〉 − 〈k2⊥b〉
〈q2T 〉

sin 2θ′ cosφ′
}

,

(52)

and

dσSA

d4qdΩ′
=

√
2eα2

12M2s

qT
MS

∑

q

e2q ∆f q
a/↑(xa) f̄

q
b/B(xb)

e−q2T /〈q2T 〉
S

π〈q2T 〉2S

〈k2⊥a〉2S
〈k2⊥a〉

×

{

(1 + cos θ′) sin(φSA − φγ)

+
qT
M

[( 〈k2⊥a〉S − 〈k2⊥b〉
〈q2T 〉S

+
〈k2⊥b〉
q2T

)

sin 2θ′ cosφ′ sin(φSA − φγ)

−
〈k2⊥b〉
q2T

sin 2θ′ sinφ′ cos(φSA − φγ)
]}

, (53)

where we have defined 〈k2⊥a〉 + 〈k2⊥b〉 ≡ 〈q2T 〉, and 〈k2⊥a〉2S + 〈k2⊥b〉 ≡ 〈q2T 〉S . Notice that Eq. (53) can be
rearranged as Eq. (25):

dσSA

d4qdΩ′
=

√
2eα2

12M2s

qT
MS

∑

q

e2q ∆f q
a/↑(xa) f̄

q
b/B(xb)

e−q2T /〈q2T 〉
S

π (〈q2T 〉S )
2

〈k2⊥a〉2S
〈k2⊥a〉

×


